

A Novel Cold-FET Method for Determining Extrinsic Capacitances Using a Capacitive Transmission Line Model

Yeong-Lin Lai and Cheng-Tsung Chen

Department of Electronic Engineering, Feng Chia University, Taichung 407, Taiwan, R. O. C.

Tel: 886-4-24517250 ext.3878, Fax: 886-4-24510405, Email: yllai@fcu.edu.tw

Abstract — A novel cold-FET method using a capacitive transmission line (CTL) model to extract extrinsic capacitances for the small-signal equivalent circuit of field-effect transistors (FET's) is proposed. The extrinsic gate capacitance (C_{pg}) and drain capacitance (C_{pd}) of the FET's are extracted on the basis of the distributed CTL model and ABCD matrix representation for the depletion region beneath gate under the pinched-off cold-FET condition. The extraction method proposed is applied to obtain the small-signal equivalent circuit model for the FET's. The simulated S parameters using the CTL model exhibit great agreement with the measured S parameters.

I. INTRODUCTION

The small-signal equivalent-circuit model plays an important role for evaluation of microwave performance of field-effect transistors (FET's) [1], [2] and design of monolithic microwave integrated circuits (MMIC's) [3]. The accurate extrinsic capacitance parameters are essential for determination of the small-signal equivalent circuit model [4], [5]. The pinched-off cold-FET methods [4]-[7], in which the gate voltage (V_{GS}) was biased to turn an FET off and the drain-to-source voltage (V_{DS}) was set to zero, have been widely studied to extract the extrinsic capacitance parameters of the FET's such as MESFET's, HFET's and HEMT's. These pinched-off cold-FET methods reported use lumped capacitance model to describe the intrinsic depletion region under the gate. The extrinsic gate capacitance (C_{pg}) and drain capacitance (C_{pd}) can be determined from the Y -parameter frequency response of the devices. On the other hand, the distributed capacitance model has been used to represent the intrinsic depletion region under the gate for the pinched-off cold FET to extract the C_{pg} and the C_{pd} [8]. The length of the depletion region was assumed to be linearly dependent on the gate bias. However, the assumption can not be applied to the common FET's with a uniformly-doped channel.

In this paper, we present a fast and simple method for extraction of extrinsic capacitances using a physically-meaningful capacitive transmission line (CTL) model and a linear regression technique [5]. The method developed provides an accurate technique for the small-signal

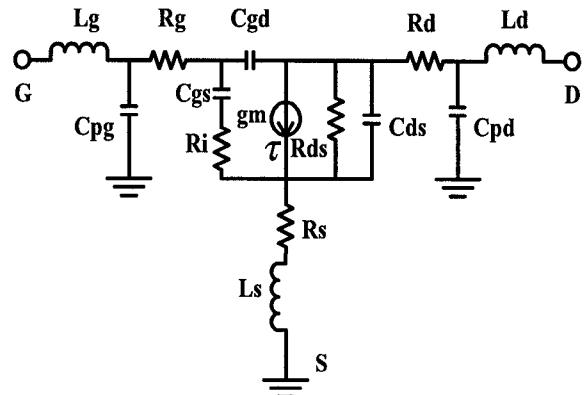


Fig. 1. Small-signal equivalent circuit of an FET.

equivalent circuit modeling of MESFET's, HFET's and HEMT's.

II. PARAMETER EXTRACTION

Fig. 1 shows the small-signal equivalent circuit of the FET's which consists of the intrinsic parameters (g_m , C_{gs} , C_{gd} , C_{ds} , R_i , R_{ds} , and τ) and the extrinsic elements (L_g , L_d , L_s , C_{pg} , C_{pd} , R_g , R_d , and R_s) [4].

On the basis of the equivalent circuit of Fig. 1, the small-signal equivalent-circuit model under the pinched-off cold-FET condition is proposed as shown in Fig. 2. The intrinsic depletion region of the pinched-off cold FET is described by the distributed CTL model which contains two kinds of the capacitances per unit length, the series capacitance (C_s) and the parallel capacitance (C_p). The ABCD matrix of the transmission line for the CTL model is indicated by M_{CTL} and expressed by [9]:

$$M_{\text{CTL}} = \begin{bmatrix} \cosh(\gamma t) & Z_0 \sinh(\gamma t) \\ \sinh(\gamma t) & \cosh(\gamma t) \end{bmatrix} \quad (1)$$

where γ is the propagation constant, l is the length of the transmission line, and the Z_0 is the characteristic impedance. We have [8]

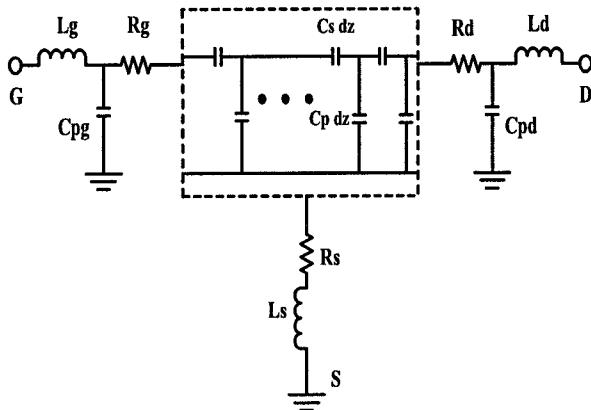


Fig. 2. Small-signal equivalent-circuit model of the pinched-off cold FET with the distributed CTL model for the intrinsic depletion region.

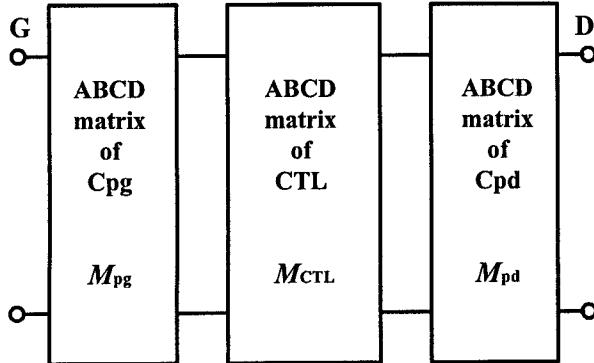


Fig. 3. Small-signal equivalent-circuit model of the pinched-off cold FET represented by the M_{CTL} in conjunction with the M_{pg} and the M_{pd} .

$$\gamma = \sqrt{\frac{C_p}{C_s}} \quad (2)$$

$$Z_0 = \frac{1}{j\omega\sqrt{C_p C_s}} \quad (3)$$

The small-signal equivalent-circuit model of the pinched-off cold FET can be represented by the Y parameters. The imaginary part of the Y parameters are not influenced by the extrinsic resistances (R_g , R_d , and R_s) and the extrinsic inductances (L_g , L_d , and L_s) at the frequencies up to a few GHz [4]. After ignoring the extrinsic resistances and inductances, the small-signal equivalent-circuit model of the pinched-off cold FET is described by the M_{CTL} matrix in conjunction with the ABCD matrices for the C_{pg} and the C_{pd} as shown in Fig. 3. The ABCD matrix of the C_{pg} is indicated by M_{pg} and that of the C_{pd} is

indicated by M_{pd} . We get

$$M_{pg} = \begin{bmatrix} 1 & 0 \\ Y_{pg} & 1 \end{bmatrix} \quad (4)$$

$$M_{pd} = \begin{bmatrix} 1 & 0 \\ Y_{pd} & 1 \end{bmatrix} \quad (5)$$

where $Y_{pg} = j\omega C_{pg}$ and $Y_{pd} = j\omega C_{pd}$.

The ABCD matrix of the pinched-off cold FET is indicated by M_{FET} and expressed by

$$M_{FET} = M_{pg} \cdot M_{CTL} \cdot M_{pd} \quad (6)$$

The elements of the M_{FET} include

$$M_{FET11} = \cosh(\gamma l) + Y_{pd} Z_0 \sinh(\gamma l) \quad (7)$$

$$M_{FET12} = Z_0 \sinh(\gamma l) \quad (8)$$

$$M_{FET21} = (Y_{pg} + Y_{pd}) \cosh(\gamma l)$$

$$+ \left(\frac{1}{Z_0} + Y_{pg} Y_{pd} Z_0 \right) \sinh(\gamma l) \quad (9)$$

$$M_{FET22} = \cosh(\gamma l) + Y_{pg} Z_0 \sinh(\gamma l) \quad (10)$$

The M_{FET} is then transformed to the Y -parameter matrix, Y_{FET} . We have

$$Y_{FET11} = Y_{pg} + \frac{1}{Z_0 \tanh(\gamma l)} \quad (11)$$

$$Y_{FET22} = Y_{pd} + \frac{1}{Z_0 \tanh(\gamma l)} \quad (12)$$

The imaginary part of the Y_{FET} can be expressed by the following equations:

$$\frac{\text{Im}(Y_{FET11})}{\omega} = C_{pg} + \frac{\sqrt{C_p C_s}}{\tanh(\gamma l)} \quad (13)$$

$$\frac{\text{Im}(Y_{FET22})}{\omega} = C_{pd} + \frac{\sqrt{C_p C_s}}{\tanh(\gamma l)} \quad (14)$$

For a fixed pinched-off cold-FET bias, the C_p , C_s , γ , and l are constant.

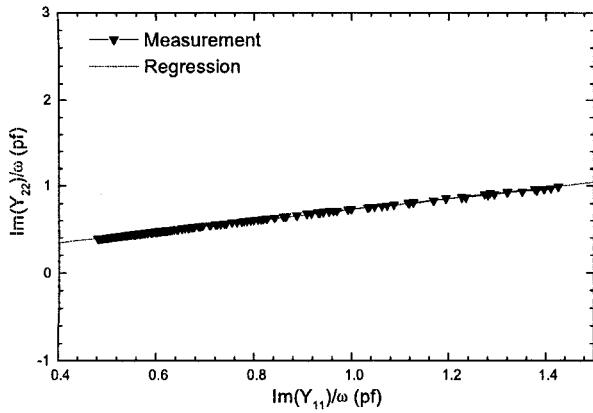
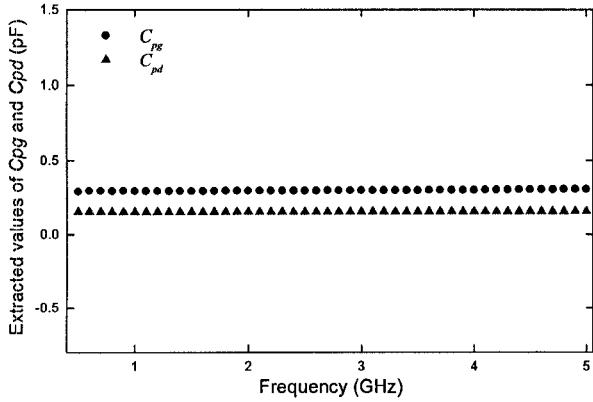


Fig. 4. Imaginary parts of measured Y_{22} parameters versus Imaginary parts of measured Y_{11} parameters represent the relationship between C_{pg} and C_{pd} .



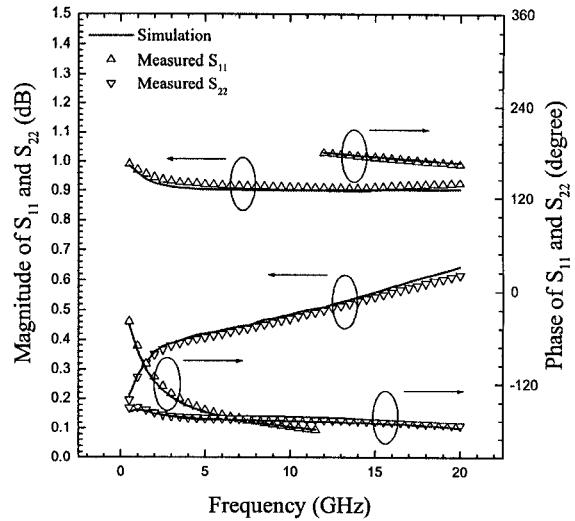
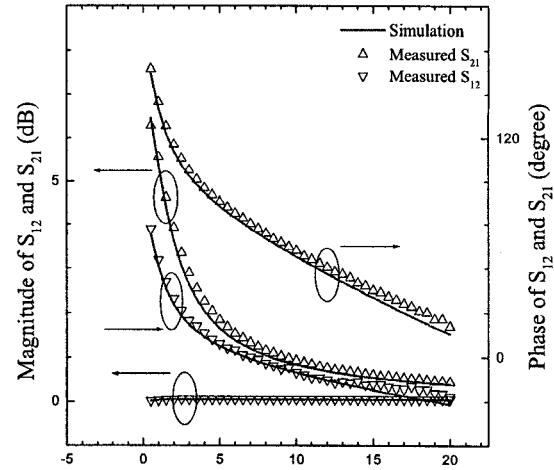

Fig. 5. Frequency response of the C_{pg} and the C_{pd} .

Fig. 4 shows the measurement characteristics of the $\text{Im}(Y_{22})/\omega$ versus the $\text{Im}(Y_{11})/\omega$. The $\text{Im}(Y_{22})/\omega$ is linearly dependent on the $\text{Im}(Y_{11})/\omega$. The slope of the $\text{Im}(Y_{22})/\omega$ versus the $\text{Im}(Y_{11})/\omega$ is obtained by the linear regression technique [5]. According to the slope value and the equations (13) and (14), we can determine the C_{pg} and the C_{pd} .


Fig. 5 shows the resulted frequency response of the C_{pg} and the C_{pd} . Both the C_{pg} and the C_{pd} are constant against frequencies. The extracted value of the C_{pg} is 0.299 pF and that of the C_{pd} is 0.154 pF.

III. EQUIVALENT CIRCUIT MODEL

The developed extraction method for the C_{pg} and C_{pd} can be used to obtain the small-signal equivalent circuit model of the normally-operated FET. The element values of the small-signal equivalent circuit model for a submicron GaAs MESFET are extracted as follows: $L_g=73.44$ pH, $L_d=71.31$

(a)

(b)

Fig. 6. Measured and Simulated S parameters. (a) S_{11} and S_{22} and (b) S_{12} and S_{21} .

pH, $L_s=3.01$ pH, $C_{pg}=0.299$ pF, $C_{pd}=0.154$ pF, $C_{gs}=1.488$ pF, $C_{gd}=0.1717$ pF, $C_{ds}=0.0791$ pF, $R_g=0.35$ Ω, $R_d=0.48$ Ω, $R_s=0.46$ Ω, $R_i=2.075$ Ω, $R_{ds}=34.42$ Ω, $g_m=179$ mS, $\tau=2.186$ pS. Fig. 6 shows the simulated S parameters based on the extracted parameters of the small-signal equivalent circuit model in comparison with the measured S parameters. The excellent agreement between the simulated S parameters and the measured ones is demonstrated.

VI. CONCLUSION

The extrinsic capacitances, C_{pg} and C_{pd} , are extracted using a new pinched-off cold-FET method. The distributed CTL model is used to represent the intrinsic depletion region under the gate. The ABCD matrix representation is adopted for the equivalent circuit of pinched-off cold FET. The frequency response of the C_{pg} and the C_{pd} are determined according to the CTL model and the linear regression technique. The accurate small-signal equivalent circuit model for FET's is achieved by the proposed method.

ACKNOWLEDGMENT

This work was supported in part by the National Science Council of the Republic of China under Contract NSC89-2213-E-035-070.

REFERENCES

- [1] M. Feng, J. Laskar, J. Kruse, and R. Neidhard, "Ultra-low-noise performance of 0.15-micron gate GaAs MESFET's made by direct ion implantation for low-cost MMIC's applications," *IEEE Microwave and Guided Wave Lett.*, vol. 2, no. 5, pp. 194-195, May 1992.
- [2] Y. -L. Lai, E. Y. Chang, C. Y. Chang, T. H. Liu, S. P. Wang, and H. T. Hsu, "2-V-operation δ -doped power HEMT's for personal handy-phone systems," *IEEE Microwave and Guided Wave Lett.*, vol. 7, no. 8, pp. 219-221, Aug. 1997.
- [3] H. Fudem and E. C. Niehenke "Novel millimeter wave active MMIC triplers," in *IEEE MTT-S Int. Microwave Symp. Dig.*, pp. 387-390, 1998.
- [4] G. Dambrine, A. Cappy, F. Heliodore, and E. Playez, "A new method for determining the FET small-signal equivalent circuit," *IEEE Trans. Microwave Theory Tech.*, vol. 36, no. 7, pp. 1151-1159, July 1988.
- [5] Y. -L. Lai and K. -H. Hsu, "A new pinched-off cold-FET method to extract parasitic capacitances of MESFET's and HEMT's," in *Proc. IEEE Radio and Wireless Conf.*, pp. 159-162, 2000.
- [6] P. M. White and R. M. Healy, "Improved equivalent circuit for determination of MESFET and HEMT parasitic capacitances from "Coldfet" measurements," *IEEE Microwave and Guided Wave Lett.*, vol. 3, no. 12, pp. 453-454, Dec. 1993.
- [7] R. Anholt and S. Swirhun, "Equivalent-circuit parameter extraction for cold GaAs MESFET's," *IEEE Trans. Microwave Theory Tech.*, vol. 39, no. 7, pp. 1243-1247, July 1991.
- [8] W. Stiebler, M. Matthes, G. Böck, T. Köppel, and A. Schäfer, "Bias-dependent "cold-(H)FET" modeling," in *IEEE MTT-S Int. Microwave Symp. Dig.*, pp. 1313-1316, 1996.
- [9] S. Lin and E. S. Kuh, "Transient simulation of lossy interconnects based on the recursive convolution formulation," *IEEE Trans. Circuits and Systems: Fundamental Theory and Applications*, vol. 39, no. 11, pp. 879-892, Nov. 1992.